Python : NSEPY for multiple Stock

 

import numpy as np
import pandas as pd
from datetime import datetime,date,time,timedelta
from nsepy import get_history
import pandas as pd
import numpy as np
import pandas_ta as ta


stocks = ['JSWSTEEL','RELIANCE','AXISBANK','HCLTECH','TECHM','HDFC','ICICIBANK']
# stocks = ['ADANIENT', 'ADANIPOWER', 'AMARAJABAT', 'ACC', 'RAMCOCEM', 'AMBUJACEM', 'APOLLOHOSP', 'ASIANPAINT', 'AUROPHARMA', 'AXISBANK', 'BAJAJ-AUTO', 'BAJAJFINSV', 'BAJFINANCE', 'ADANIPORTS', 'BALKRISIND', 'BHARTIARTL', 'BANDHANBNK', 'BATAINDIA', 'BEL', 'BERGEPAINT', 'BHARATFORG', 'BHEL', 'BOSCHLTD', 'BRITANNIA', 'CANBK', 'CIPLA', 'COALINDIA', 'COLPAL', 'CUMMINSIND', 'DABUR', 'BANKBARODA', 'DIVISLAB', 'DRREDDY', 'EICHERMOT', 'EXIDEIND', 'FEDERALBNK', 'GAIL', 'GLENMARK', 'GRASIM', 'HAVELLS', 'HCLTECH', 'HDFCLIFE', 'HEROMOTOCO', 'HINDALCO', 'HINDPETRO', 'HINDUNILVR', 'ICICIBANK', 'ICICIPRULI', 'INDIGO', 'INDUSINDBK', 'INFY', 'ITC', 'JUBLFOOD', 'JUSTDIAL', 'KOTAKBANK', 'LICHSGFIN', 'LUPIN', 'MANAPPURAM', 'MARICO', 'MARUTI', 'BIOCON', 'CADILAHC', 'MCDOWELL-N', 'MFSL', 'MGL', 'MINDTREE', 'MOTHERSUMI', 'MRF', 'MUTHOOTFIN', 'NATIONALUM', 'NCC', 'NIITTECH', 'NMDC', 'NTPC', 'PEL', 'PETRONET', 'PFC', 'PIDILITIND', 'RBLBANK', 'RECLTD', 'SAIL', 'SBIN', 'SIEMENS', 'SRF', 'SRTRANSFIN', 'SUNTV', 'TATAPOWER', 'TECHM', 'TITAN', 'TORNTPHARM', 'TORNTPOWER', 'TVSMOTOR', 'UJJIVAN', 'ULTRACEMCO', 'UPL', 'VOLTAS', 'ASHOKLEY', 'CONCOR', 'INFRATEL', 'BPCL', 'CHOLAFIN', 'DLF', 'EQUITAS', 'ESCORTS', 'IDEA', 'JSWSTEEL', 'LT', 'GODREJCP', 'GODREJPROP', 'SBILIFE', 'HDFC', 'HDFCBANK', 'IDFCFIRSTB', 'JINDALSTEL', 'M&M', 'M&MFIN', 'UBL', 'NAUKRI', 'NESTLEIND', 'ONGC', 'PAGEIND', 'POWERGRID', 'RELIANCE', 'SHREECEM', 'SUNPHARMA', 'TATAMOTORS', 'TATASTEEL', 'CENTURYTEX', 'VEDL', 'APOLLOTYRE', 'PNB', 'TATACHEM', 'IGL', 'IOC', 'TATACONSUM', 'TCS', 'WIPRO', 'ZEEL', 'L&TFH', 'IBULHSGFIN', 'GMRINFRA']
start = datetime.today() - timedelta(5)
end = datetime.today()
close_price = {}

for tickers in stocks:
    close_price = get_history(tickers,start,end)
    df = pd.DataFrame(close_price)
    print(df)

C:\Users\mahen\PycharmProjects\pythonProject\venv\Scripts\python.exe “C:/Users/mahen/PycharmProjects/pythonProject/venv/Multiple nsepy.py”

Output

Symbol Series … Deliverable Volume %Deliverble
Date …
2022-08-01 JSWSTEEL EQ … 893402 0.2924
2022-08-02 JSWSTEEL EQ … 794778 0.2603
2022-08-03 JSWSTEEL EQ … 861052 0.1937
2022-08-04 JSWSTEEL EQ … 757341 0.1609
2022-08-05 JSWSTEEL EQ … 307373 0.1252

[5 rows x 14 columns]
Symbol Series … Deliverable Volume %Deliverble
Date …
2022-08-01 RELIANCE EQ … 3695549 0.5100
2022-08-02 RELIANCE EQ … 3420282 0.5325
2022-08-03 RELIANCE EQ … 3725408 0.5664
2022-08-04 RELIANCE EQ … 3215051 0.4815
2022-08-05 RELIANCE EQ … 4106312 0.6382

[5 rows x 14 columns]
Symbol Series … Deliverable Volume %Deliverble
Date …
2022-08-01 AXISBANK EQ … 2872346 0.5229
2022-08-02 AXISBANK EQ … 4300751 0.5911
2022-08-03 AXISBANK EQ … 5169070 0.5465
2022-08-04 AXISBANK EQ … 3737135 0.5005
2022-08-05 AXISBANK EQ … 1915410 0.4179

[5 rows x 14 columns]
Symbol Series Prev Close … Trades Deliverable Volume %Deliverble
Date …
2022-08-01 HCLTECH EQ 948.40 … 156568 1553023 0.6238
2022-08-02 HCLTECH EQ 952.15 … 76310 1540425 0.6052
2022-08-03 HCLTECH EQ 951.05 … 115023 2271996 0.5515
2022-08-04 HCLTECH EQ 957.20 … 122258 1953495 0.5560
2022-08-05 HCLTECH EQ 958.10 … 101848 1551732 0.6048

[5 rows x 14 columns]
Symbol Series Prev Close … Trades Deliverable Volume %Deliverble
Date …
2022-08-01 TECHM EQ 1048.65 … 123718 1468717 0.5782
2022-08-02 TECHM EQ 1049.60 … 133736 1562238 0.5575
2022-08-03 TECHM EQ 1032.60 … 152235 1593359 0.4541
2022-08-04 TECHM EQ 1052.65 … 148438 2711408 0.5058
2022-08-05 TECHM EQ 1056.05 … 75910 1375134 0.5205

[5 rows x 14 columns]
Symbol Series Prev Close … Trades Deliverable Volume %Deliverble
Date …
2022-08-01 HDFC EQ 2377.80 … 116880 1263242 0.5499
2022-08-02 HDFC EQ 2383.75 … 118058 1574984 0.5565
2022-08-03 HDFC EQ 2353.30 … 123915 1667882 0.6090
2022-08-04 HDFC EQ 2368.40 … 99381 1111653 0.6149
2022-08-05 HDFC EQ 2361.75 … 89233 943916 0.5236

[5 rows x 14 columns]
Symbol Series … Deliverable Volume %Deliverble
Date …
2022-08-01 ICICIBANK EQ … 4645204 0.5825
2022-08-02 ICICIBANK EQ … 6906789 0.6219
2022-08-03 ICICIBANK EQ … 7604666 0.6867
2022-08-04 ICICIBANK EQ … 6856925 0.6170
2022-08-05 ICICIBANK EQ … 9933579 0.6187

[5 rows x 14 columns]

By AskMahe.com

Hi, AskMahe.com is the Brainchild of Mahendran Paramasivan who is interested in bringing the latest technology to the common people and corporates. We are a team and we are providing supports on Technology and innovation as per industrial standard. We are supporting with the help of analysis we made on Technology and innovation to help corporate companies and individuals. We bring the latest updates of technology and innovation in front of the eyes of our readers, clients, and people. We have resources in Cloud computing, IoT, Edge Computing, Dew Computing, 5G, SAP, Web Designing, UI/ UX Design. Regards AskMahe Team askmahe.com