from breeze_connect import BreezeConnect from datetime import datetime,date,time,timedelta import pandas as pd import numpy as np import math from credentials001 import * breeze = BreezeConnect(api_key=api_key) breeze.generate_session(api_secret=api_secret, session_token=session_token) pd.set_option('display.max_rows', None) pd.set_option('display.max_columns', None) pd.set_option('display.width', None) pd.set_option('display.max_colwidth', None) # stock = breeze.get_historical_data(interval="1minute", # from_date="2022-9-16T07:00:00.000Z", # to_date="2022-9-16T18:00:00.000Z", # stock_code="ITC", # exchange_code="NSE", # product_type="others") stock = breeze.get_historical_data(interval="1minute", from_date="2022-9-19T09:00:00.000Z", to_date="2022-9-19T18:00:00.000Z", stock_code="CNXBAN", exchange_code="NFO", product_type="options",expiry_date="2022-09-22T18:00:00.000Z", right="call",strike_price=41200) # print(stock) df = pd.DataFrame(stock['Success']) print(df) df10 = df.iloc[:12] # print(df10) df15 = df.iloc[:17] # print(df15) # df13from = df.iloc[13:] # print(df) # max = df['high'].max() # min = df['low'].min() # print("For 10 mins:",df['high'].max(),df['low'].min(), df['open'][2],df['close'][11]) # print("For 10 mins:", df10['open'][1],df10['high'].max(),df10['low'].min(),df10['close'][11],df['close'].iloc[-1]) # print("For 15 mins:", df15['open'][1],df15['high'].max(),df15['low'].min(),df15['close'][16],df['close'].iloc[-1]) # print("For 15 mins:",df['high'].max(),df['low'].min(), df['open'][2],df['close'][16]) # if df['close'] > df10['high'].max(): # print("Buy") for index, row in df[14:].iterrows(): print(df['close'].iloc[-1]) # print("Previous close check:", df['close'].iloc[index-1:].max(), df10['high'].max()) # print(df['close'].iloc[index-1:].max()) if (df['close'].iloc[index-1:].max() < df10['high'].max()): print("Previous close check:",df['close'].iloc[index-1:].max(),df10['high'].max()) if df['close'].iloc[-1] > df10['high'].max(): print("Buy",df['close'].iloc[-1],df10['high'].max()) else: break else: break # for index, row in df[14:].iterrows(): # if (df['close'].iloc[index-1] > df10['low'].min()): # if df['close'].iloc[-1] < df10['low'].min(): # print("Sell") # else: # break # else: # break # if df['close'].iloc[-1] > df10['high'].max(): # print("Buy",df[13:]) # if df['close'].iloc[-1] < df10['low'].min(): # print("Sell",df[13:])